
Hints for Debugging
Microcontroller-based
Designs
Time-saving tips from successful
designers of 8- and 16-bit systems.8

2

Contents
Hint 1: Tracking down elusive glitches.
Using peak detect and deep memory
to capture a tough glitch in a
Motorola 68HC11K1-based digital
radio transmitter.

Hint 2: Characterizing analog-to-digital
converters. Using a low-cost oscillo-
scope, an arbitrary waveform
generator, and a PC-hosted logic
analyzer to test analog-to-digital
conversion integrity.

Hint 3: Verifying PWM dead time in
motor controllers. Using mixed analog
and digital channels to verify proper
signal timing in an Infineon C504-
based system.

Hint 4: Verifying I2C bus arbitration.
Implementing I2C routines in
Microchip PIC18CXXX
microcontrollers.

Hint 5: What-if testing for MCU debuging.
Using an arbitrary waveform
generator to predict how a PICmicro
16C84-based system will respond to
real-world signals.

Hint 6: Resolving hardware/software
integration problems. Using a NOHAU
8031 emulator and a mixed signal
oscilloscope to track down the
anomalies that often plague
hardware/software integration
efforts.

Hint 7: Correlating software and analog
outputs in a CAN controller. Using a
combination of analog and digital
measurements to debug program
code that drives a Philips 80C51-
based controller area network
(CAN) system.

Hint 8: Debugging an MCU-based CCD
camera controller. Using a combination
of TV triggering, analog scope meas-
urements and digital timing measure-
ments on a Philips 80C552-based
camera control system.

Intel is a U.S. trademark of Intel Corporation

Introduction

The challenge of debugging
MCU-based designs
It’s almost impossible to design an
electronic or electromechanical
product these days without using a
micro-controller. While there are
plenty of interesting design chal-
lenges, the debugging tools for
MCU-based designs haven’t always
kept up.

If you work with 8- and 16-bit MCUs,
for instance, you’ve probably felt
stuckin the middle, between generic,
basictools (such as scopes) and
higher-endtools aimed at micro-
processors (such as traditional logic
analyzers and emulators). At the
same time, you’re prob-ably dealing
with a mix of analog and digital
signals, so a scope by itself or a
logic analyzer by itself is only half
a solution.

Moreover, you probably don’t have
the luxury of specializing. You have
to know analog hardware, digital
hard-ware and firmware—and be
good at all three. And all the while,
market win-dows are getting
narrower, competition is getting
stronger, and customers are expect-
ing more power and capability from
your MCU-based products. Your job
may be a lot of things, but boring
certainly isn’t one of them.

Help is on the way
As the worldwide leader in test and
measurement, we’re working hard to
help engineers like you meet your
MCU-based design challenges. One
way we can help is with the informa-
tion in this booklet, practical debug-
ging hints from engineers working
with a variety of MCUs. You’ll see
how these designers use some of the
latest MCU debugging tools to get
their new products to market faster.

3

Tracking down elusive glitches
By Steven Schram, Invocon. Inc. 1HintInfrequent, unpredictable events

can present some of the toughest
troubleshooting challenges around.
I recently encountered such a glitch
while designing a low-power data
acquisition device. This wireless
instrument system uses a group of
remote sensor units and spread
spectrum radio transceivers
(Figure 1). Data collected at the
system can be retrieved by a network
control unit connected to a computer.

The system uses the interrupt pin on
a low-power clock chip to trigger
power-up events every 60 seconds.
Between events, the clock and sup-
porting logic are the only devices
drawing current (approximately
50 µA). After getting a trigger from
the clock, the Motorola 68HC11K1
microcontroller powers up, collects
temperature data and listens for
transceiver activity. If it hears a
data request on the transceiver, the
MCU transmits the temperature data.

The glitch in question was showing
up during this 60-second interval,
when the system was supposed to be
quiet. To find and analyze this
anomaly, I used a deep memory
(1 Mbyte) digital oscilloscope with
peak detect. Since the glitch occurred
so infrequently, I first set the scope’s
time base at 10 seconds/division in
order to capture the entire 60-second
sequence. Without peak detect, most
narrow events would be impossible to
detect at this time base setting. But
as Figure 2 shows, the glitch in my
system was easily captured and
viewed. Peak detect showed some-
thing unusual happening approxi-
mately 15 seconds after the clock
trigger event.

Once I became aware of the
anomaly’s presence in my system, the
scope’s deep memory made it easy to
zoom in and analyze the glitch in
more detail. With the scope’s 1 Mbyte
of acquisition memory, the initial
waveform capture at 10 seconds/divi-
sion was also sufficient to see wave-
form details when I zoomed in and
viewed at 10 milliseconds/division
(Figure 3).

Oscilloscope

Motorola
MC68HC11K1

MCU

Spread
spectrum

transceiver

ADC

Clock

Temperature
sensors

Figure 1. Basic block diagram of the wireless instrumentation system.
One analog input on the scope monitored power-up on the MCU while
the other monitored the carrier detect signal feeding the transceiver.

Figure 2. The initial measurement using peak detect with a
10 s/div time base setting.

Figure 3. Once the glitch was identified, zooming in to a faster
time base setting provided the necessary details.

4

Characterizing analog-to-digital
converters using a PC-hosted
logic analyzer
By Steven Warntjes, Agilent Technologies2Hint
With today’s digital revolution in the
electronics industry, analog-to-digital
converters (ADCs) are increasingly
common. ADCs can be found as
either stand-alone parts or integrated
into microcontrollers as special I/O
peripherals. Depending upon the
analog input accuracy requirements
of your particular MCU-based
application, certain ADC specifica-
tions may require verification prior
to releasing the design to production.
This hint shows how to test analog-to-
digital conversion integrity using a
low-cost oscilloscope, an arbitrary
waveform generator, and a PC-hosted
logic analyzer (test setup shown in
Figure 1). Specifically, this hint will
examine differential nonlinearity
errors as they relate to missing
digital codes of the ADC.

Generating the
test signal
A common test signal
used to evaluate analog--
to-digital converters is a
voltage ramp. The
voltage range for the
ramp is the range of
analog inputs applied to
the converter for which
it is expected to generate
digital outputs. In this
particular example
where we test the
integrity of an 8-bit ADC,
the operating range is 0
to 5 volts. Because an
ADC converts continu-
ous analog voltages to a
discrete number of digi-
tal codes, a conversion
(or quantization) error
will be introduced. In our
case, each of the 256 pos-
sible digital output
values represents a
19.5-millivolt voltage
range for the analog
input.

Agilent 54622A
Oscilloscope

Agilent 33120A
Arb Generator

8-Bit
MCU

8

88-Bit ADC

Agilent LogicWave
Logic Analyzer

Figure 1. ADC test setup.

Figure 2. The oscilloscope measured ADC test signal
generated with an Agilent 33120A.

In this example, we are testing for
missing digital output codes. To
ensure that the ADC has an
opportunity to output the correct
code for the given analog input
value, we generate the voltage
ramp slowly enough that the
ADC has at least four chances to
output each digital code. For this
example, the input voltage change
is about 19.5 mV every four
sample clocks. Since our sample
clock is 2 kHz, four sample peri-
ods represent 2 milliseconds.
Applying this voltage change over
the entire 5-volt operating range
results in a 1.95 Hz ramp.

We also have to consider test sig-
nal noise on the ADC input. An
input signal with 50 millivolts of
noise could generate missing ADC
output codes even if the ADC is
operating correctly. Figure 2
shows an oscilloscope measure-
ment using an Agilent 54622A
digitizing scope. The test signal
was generated from an Agilent
33120A function/arbitrary wave-
form generator. A close examina-
tion of an expanded portion of
the signal shows that we have
about 10 millivolts of noise. If the
noise is significant enough to
cause missing ADC codes, multi-
ple applications of the ramp can
be applied. If the noise is truly
random, eventually we would
expect to see all apparent missing
codes.

Capturing the ADC digital
outputs
Most logic analyzers have two
modes of operation: synchro-
nous/state analysis and asynchro-
nous/timing analysis. The asyn-
chronous sampling mode will
produce timing waveforms, much
like an oscilloscope. The synchro-
nous sampling mode produces a
state listing of captured data on
most logic analyzers.

5

To test output codes of ADCs, the synchronous/state mode
is the preferred sampling method to use. In this mode of
operation, the analyzer samples digital bus values synchro-
nous to a clock edge that is provided by the system under
test. In our example, the analyzer’s assigned sample clock is
the ADC sample clock. The advantage of this method of
acquiring data (as opposed to asynchronous/timing analysis
mode) is that the data is sampled only when data is stable
and valid. In synchronous/state analysis, the data must be
stable for the logic analyzer to sample correctly. This
stability time is referred to as the setup/hold window of the
logic analyzer. In our example, the rising edge of the sample
clock allows us to capture the data from the previous analog
input. The ADC data sheet usually specifies a data
setup and hold specification relative to the sample clock on
the data outputs. To ensure measurement integrity, the
ADC setup/hold specifications should exceed the logic
analyzer setup/hold requirements.

Figure 3 shows a logic analyzer display (state listing) of the
ADC output. The primary or top window shows the logic
analyzer triggering on the first 00H ADC output. Note that
the ADC output label counts up from the 00H value. Also,
note the absolute time displayed in the far right column. The
time between the X and O markers shows the four samples
that were collected while the ADC output value was 2.

To look for missing ADC codes, a logic analyzer’s trigger
capability is invaluable. Set the logic analyzer to trigger on a
specific ADC code, such as 43H. If the logic analyzer never
triggers, we can be sure that the ADC output is never hit. By
applying a continuous set of input ramps with a specific
logic analyzer trigger condition, we can quickly determine if
there are any missing codes even if the noise on the ADC
input is larger than the ADC step as discussed above.

Analyzing the captured data
After the data has been captured, it is a simple matter to
process the information with a tool such as Microsoft ®
Excel. From within the Agilent LogicWave logic analyzer
(Figure 3) we can save the captured data and easily import it
into Excel. Once in Excel, the captured data can be charted
versus an ideal voltage ramp. Figure 4 shows a portion of
the voltage ramp comparing the ideal voltage to the ADC
output. Note that a specific ADC code is missing, resulting in
differential nonlinearity error. With the use of PC software,
the oscilloscope waveform can also be captured and dis-
played. Comparing multiple views of the ramp, the ideal
ramp, the oscilloscope measured ramp and ADC output
measured with the logic analyzer, is a good way to analyze
ADC conversion.

Microsoft is a U.S.-registered trademark of Microsoft Corporation.

Figure 3. The Agilent LogicWave synchronous capture display
of the ADC output codes.

Figure 4. A comparison of the ideal ADC voltage ramp with the
Excel charted ADC output.

6

Verifying PWM dead time
in motor controllers
Technical staff, Infineon Technologies3Hint
Generating pulse width modulated
(PWM) signals with an MCU is a com-
mon way to control AC motors with
sine-wave shaped currents. A typical
application for an 8-bit MCU is con-
trolling a three-phase induction drive
with variable speed in an open-loop
configuration.

However, the MCU can’t
drive an induction
motor directly, so you
need to amplify the
three-phase signals first.
Instead of using analog
amplifiers, a more effi-
cient way is to digitally
amplify the PWM
outputs with power
switches, such as
MOSFETs or IGBTs. The
three-phase inverter
shown in Figure 1
accomplishes this
function.

The hardware for each
phase of the inverter
consists of two power
switches (high side and
low side) in a push-pull
configuration. This cre-
ates a potential problem,
though, if the control
sig-nals for the switches
are exact complements
of each other. During
PWM switching, both
power switches might
momentarily conduct
simultaneously due to
different transistor
turn-on and turn-off
latencies. This can cre-
ate a high-current short
circuit and may destroy
the inverter. It’s
therefore important to
use an MCU optimized

for motor control, such as the
Infineon C504 (an 8051 derivative) or
C164 (16-bit architecture). Both can
be pro-grammed to insert “dead time”
in the PWM outputs by hardware
without any software overhead. The
dead time ensures that the two
switches never conduct at the same
time.

After programming the microcon-
troller to create the PWM output
signals with dead time, the next step
is testing the wave shape and timing.
A four-channel scope can do the basic
measurement, but if one is available,
mixed signal scope is a better choice
because you can measure multiple
analog and digital waveforms
simultaneousl and set up complex
logic triggers.

Figure 2 verifies that the pro-
grammed dead time is sufficient for
safe PWM switching. This zoomed-in
display shows the impact of the dead
time on the analog gate-source volt-
age of the power switch MOSFETs.
The scope’s cursors simplify the cor-
rect timing measurement and help
characterize the circuit precisely.
With combined digital and analog
measurement channels, you can
easily monitor all six PWM signals
and the phase currents. Figure 3
shows the two phase currents and
corresponding digital PWM pattern.
The time-qualified trigger mode lets
you synchronize the scope’s display
to an adjustable pulse width
corresponding to a well-defined
phase angle.

Mixed signal
oscilloscope

Three-phase
motor

Three
phases

PWM
signals

Asynchronous
serial link

Three-phase
inverter

Infineon
C504
MCU

User
interface

(PC)

Figure 2. Verifying the dead time between the high-side and
low-side PWM outputs.

Figure 1. Block diagram of an open-loop configuration for
generating safe PWM signals to drive a three-phase motor.

Figure 3. Monitoring all six PWM signals and the phase
currents on the high-side and low-side switches.

7

Verifying I2C bus arbitration
by David Brobst, Solutions Cubed 4Hint
The I2C bus allows multiple micro-
controllers to share resources over a
single communication channel. I2C is
a synchronous, bi-directional, multi-
device communication bus. The real
strength of the I2C bus is that it only
requires two wires for communica-
tion: data (SDA) and clock (SCL).
Multiple devices can be attached to
these two lines, thereby easing con-
nection issues. However, this advan-
tage adds a layer of complexity to
communica-tion exchanges on the
bus. Problems can occur when two
devices try to communicate at the
same time.

The I2C protocol is set up in a
master/slave configuration. A master
must initiate all communication and
control the clock signal. Once a
master starts communication, all
other masters refrain from starting
communication. However, problems
can arise when two or more masters
try to start communication at the
same time. Thankfully, I2C has a
method of self arbitration built into
the protocol.

Both the SCL and the SDA lines are
configured in an open-collector
wired-AND manner. This means a
device that outputs a ‘0’ will override
any other device trying to output a
‘1’. Masters on the bus monitor the
actual state of the SCL and SDA lines
and compare the bits on those lines
to the ones they are trying to output.
If at any time there is a mismatch, the
master knows another master is on
the bus, and it stops trying to
communicate.

Many engineers working with
embedded systems have wrestled
with adding arbitration into their I2C
firmware designs. Covering all cases
can become a headache, and quickly
add to the size and complexity of the
firmware. Microchip has eased this
burden with their new PIC18CXXX
line of microcontrollers, which
include full master support for the
I2C bus, implemented in a hardware
syn-chronous serial port (SSP). Using
the SSP to control I2C communication
relieves you of the most onerous
aspects of I2C arbitration.

Figure 1 shows a typical system
where master mode arbitration
comes into play. In this case, both
masters share the I2C bus and can try
to communicate cate to either the
EEPROM or the tem-perature sensor
at any time. If there was no arbitra-
tion, data could be lost. However, the
PIC18C452 controller provides a flag
indicating that a bus collision has
occurred. Writing firmware to utilize
this bit is a relatively simple matter.
If the bit is ever set, a different mas-
ter has control of the bus and the
controller has stopped all I2C action.
The system can try again when the
I2C bus is again free. Figure 2 shows
a code fragment that accomplishes
this task.

When communicating to the EEPROM
over the I2C bus, the first byte sent is
a A0H. Likewise, the first byte sent to
the temperature sensor is a 90H. If
one master starts communication to
the EEPROM and the other to the
temperature sensor at the same time,
the con-troller talking to the
EEPROM should lose arbitration on
the third bit of the first byte. It loses
arbitration because of the wired-AND
configuration of the bus (the third bit
to the EEPROM is a ‘1’ and to the
temperature sensor is a ‘0’).

Using Agilent’s new 54622D mixed
signal oscilloscope (MSO), you can
easily verify the arbitration process
in the system shown in Figure 2. By
using this oscilloscope’s I2C trigger-
ing capabilities to trigger on a start
condition, you can capture the
beginning of an I2C communication.
Figure 3 shows the capture of Master
#1 starting communication with the
temperature sensor, while Master #2
is starting to communicate to the
EEPROM. Master #2 toggles an I/O
pin twice any time its BCLIF bit gets
set. The digital channel D1 on the
Agilent 54622D MSO shows this I/O.
As shown in Figure 3, Master #2 indi-
cates its BCLIF is set during the third
bit of the I 2 C communication,
signaling it has lost arbitration and is
no longer on the I2C bus. At this
point, Master #2 must wait until
Master #1 is done with communica-
tion before trying to access the I2C
bus again.

Because it only uses two I/O lines,
the I2C bus is a valuable tool to use
in your embedded designs. With
Microchip’s new PIC18CXXX line of
microcon-trollers, it is no longer a
daunting task to create the firmware
you need for implementing
I2C routines.

Master 1
*PIC18C452

EEPROM
*24LC01B

SCL SDA

Master 2
*PIC18C452

Temperature Sensor
*DS1621

Figure 1. I2C System

Figure 2. I2C arbitration in the PIC18CXXX

Figure 3. Arbitration loss by master 2.

Collision_Monitor
btfss PIR2,BCLIF ;If collision, wait till over
goto Collision_Monitor_end

Collision_Wait
btfss SSPSTAT,P ;Bus is idle when a stop bit is detected
goto Collision_Wait
bcf SSPSTAT,P ;No spurious future stop bit detection
bcf PIR1,SSPIF ;Stop condition sets SSPIF so clear

Collision_Monitor_end

<Remaining I 2 C code goes here>

8

What-if testing for
MCU debugging
Jim Clark, LPA Designs5Hint One of our biggest challenges as
designers is verifying that our devices
will work as well in the messy real
world as they do in the lab. This is
particularly important when a design
needs to handle unpredictable
analog signals.

Our digital remote controllers (Figure
1), which are essentially digital
radios, live in an environment of
noisy, often corrupted, signals. As a
result, the data reception software
built into the receivers needs to
handle a variety of signal conditions
appearing at the received strength
signal indicator (RSSI). When we test
over short distances on a lab bench,
however, reception is usually too
good to encounter random bit errors.
And when an error does occur, it is
usually not very repeatable.

We found a simple solution in an
arbitrary waveform generator, which
can reproduce virtually any wave-

form that we can
represent as a set of
time/voltage pairs. The
first step is digitizing a
clean and verified
clean and verified
waveform that repre-
sents a good digital
data packet Any digital
scope can perform this
step, although we use a
deep-memory, mixed-
signal oscilloscope
(MSO) since we need to
capture a combination
of digital and analog
signals.

The second step is editing the cap-
tured waveform to introduce the
sorts of error conditions we need to
check for. PC connectivity software
such as Agilent IntuiLink or
LabVIEW ® makes it easy to transfer
the scope data to a PC for editing.
Since we’re using the Agilent 33120A
arbitrary waveform generator, the
IntuiLink Arb package offered a con-
venient way to do the editing. The
editing tools let us mimic a variety of
real-world conditions, including
adding noise to simulate noisy
transmission conditions, deleting
data bits to simulate bit errors, and
reducing the signal amplitude to
simulate path loss.

The third step is downloading the
modified waveform to the arbitrary
waveform generator and injecting it
into the circuit in place of the regular
RSSI signal. We can then verify that
the errors are detected and/or
corrected, depending on the specific
receiver. It’s also easy to add noise in
small increments until bit errors
occur, which helps to characterize
each model’s sensitivity to noise. The
arb generator also makes it possible
to edit a specific bit, or set of bits, to
make sure that errors in all positions
are detected.

Comparator

Microchip
PIC16C84

MCU

Receiver
subsystem

Deep memory
oscilloscope

Arb
generator

PC
GPIB GPIB

RSSI

Figure 1. A typical digital receiver circuit showing the RSSI signal
that indicates the quality of the received signal.

9

A sequence of waveforms will help
demonstrate the process. Figure 2
shows the sort of RSSI signal we
expect to get from the receiver
subsystem. For comparison, Figure 3
shows the RSSI signal captured by
the MSO, transferred to the PC and
then recreated by the arbitrary
waveform generator.

With the test system operational, we
can now start modifying the wave-
forms to perform the what-if testing.
In Figure 4, a noisy RSSI simulation
exceeds the comparator threshold,
thereby triggering a comparator
output transition that is not present
in the original digital signal. A test
such as this helps us measure the
sensitivity of the comparator in noisy
environments.

Another common test we need to
make is checking the receiver’s
response to missing, inadvertent or
misplaced bits. In Figure 5, for
instance, we inserted a bit error in
the emulated RSSI signal.

The flexibility of arbitrary waveform
generation means this kind of what-if
testing is more or less limited only by
your imagination and the nature of
the circuit under test.

LabVIEW® is a U.S. registered trademark
of National Instruments Corporation.

Figure 2. A good RSSI signal and the corresponding comparator output that
reconstructs the received serial data stream.

Figure 3. The good RSSI signal recreated by arbitrary waveform generator.

Figure 4. A noisy signal exceeds the comparator threshold signal (near the
right side of the display), generating a spurious comparator transition.

Figure 5. A bit error inserted through the arbitrary waveform generator
shows up as a bad data packet on the input of the MCU.

10

Resolving hardware/software
integration problems
By Charlie Howard, Embedded Technologies Associates, Inc.6Hint
One of the most common problems
in MCU debugging is figuring out
whether an anomaly is based in
hardware or in software. This can be
tricky enough if a single person
designs both, and it’s magnified
many times over if a team of
designers is involved.

Traditionally, hardware designers use
an oscilloscope and logic analyzer to
prove it’s a software problem, while
software designers use an emulator
to prove it’s a hardware problem.
Unfortunately, these one-sided
methods often only reconfirm that
the problem exists. What we really
need is a way to witness the problem
as it occurs, while observing how the
software and hardware behave
and/or misbehave.

Tying a logic analyzer to an emulator
can help, but this can involve a lot of
configuration and connection work. A
faster, easier alternative that’s more
than adequate for most MCU-based
designs uses an emulator’s trace and
triggering capability to trigger a
mixed signal oscilloscope. At the
same time, the emulator selectively
stores the suspect software
instructions.

In one recent debug scenario, I used a
NOHAU 8031 emulator with a mixed
signal scope to explore some trouble
in the timing signals derived from the
8031 Port1 and an analog signal’s
relationship to these signals. Setup
involved just three signals from the
board to the emulator, one signal to
the scope, and a trigger connection
between the emulator and the scope.

As Figure 1 shows, the emulator
captured the cycles in question while
triggering the scope. (Note the time
stamping.) The scope triggered on the
fetch of the write to the port and
captured the anomalous event (the
slower transitions on lines P1-1 and
P1-0) as well as the analog signal in
question, indicating a hardware
problem, as we can see from the
scope display in Figure 2.

If this had been a software problem, I
could’ve scrolled the trace buffer
while synchronizing it to the source
and program windows, making it
easy to correlate program code to the
error event. If there is more than one
programmer writing to the same port,
this method can save tremendous
amounts of time and money by
identifying the responsible software
module. Plus, hardware engineers
can continue to use the emulator’s
trigger-out and the second analog
probe to isolate the cause of the
problem further.

Figure 1. The emulator’s trace buffer shows the point (t=0) at
which the emulator triggers the scope.

Figure 2. A detailed look with the scope shows a signal delay on
lines P1-1 and P1-0.

11

Correlating software and analog
outputs in a CAN controller
By Pascal Mestdagh, EUROCORPS, Telecommunications Division 7HintUntil recently, troubleshooting mixed
signal designs, where you need exact
time coherency between analog
signals and MCU code, was extremely
difficult. The problem could be
partially solved by combining a logic
analyzer and an oscilloscope with
common time bases and triggering
them simultaneously. However, time
base differences between the two
instruments could lead to incorrect
results. Moreover, differences in
memory made things even more diffi-
cult. An alternative is to use a hybrid
scope/logic analyzer. These instru-
ments enhance cross-domain meas-
urement accuracy and can reduce
debugging time for mixed-signal
designs.

In my application, where a Philips
80C51 MCU interacts with an 82C200
CAN (Controller Area Network)
control chip to establish low-speed
data communication between several
domotics (home automation) devices,
it is not always easy to determine the
cause of an emerging problem. In this
specific case, problems arose when I
tried to send data to a remote device.
It seemed as though several bytes
were not arriving at their destination.

I connected the digital inputs of the
scope to the MCU data bus and
connected the scope’s analog inputs
to the transmission line (Figure 1).
I then used pattern triggering to
synchronize the measurement to the
specific transmission request code
word for the 82C200. Next, I set the
trigger pattern in such a way that the
measurement system triggered when
the code word and the desired trans-
mission frame occurred simultane-
ously. I quickly discovered that I had
a software problem and had to review
the code. Contrary to my first
assumption, the test revealed that a
data loss existed between the MCU
and the CAN controller, and not on
the trans-mission line (Figure 2).

The integrated scope and logic
channels made it possible to compare
with great accuracy the analog
signals with their digital originators
(the MCU code). In addition, deep
memory is a big plus, since it let me
sample the full length of the trans-
mission frame (approximately
300 ms) and at the same time have
enough detail to investigate the
microcontroller code (approximately
150 ns). Although conventional test
equipment probably could’ve solved
this problem, I saved a considerable
amount of time using a hybrid analog-
digital solution with deep memory.

Hybrid
scope/logic analyzer

Philips
80C51
MCU

82C200
CAN

controller

Line
transceiver

CANH

CANL

Figure 1. Measurement connections used to debug the CAN controller setup.

Figure 2. The simultaneous occurrence of the transmission request code word and
the analog transmission frame revealed an inconsistency in my software code.
Bytes did not arrive at their destination because the MCU didn’t verify the
“transmission complete” bit of the status register in the CAN controller.

12

Debugging an MCU-based
CCD camera controller
by Jan Fischer, Petr Kocourek, and Petr Navratil8Hint
Like many MCU-based designs, the
CCD camera systems we’ve been
designing require simultaneous
measurement of digital and analog
signals, often with complex trigger
requirements.

As Figure 1 shows, the horizontal
synchronization pulses are first
separated from the video signal.
Using these Hsync pulses, the phase
lock loop (PLL) generates the 10 MHz
ADCLK signal. The falling edge of
ADCLK samples the TV signal into
the ADC; its rising edge updates the
ADC out-put. The programmable logic
device (PLD) converts ADCLK to
generate the WR signal. The WR
rising edge writes the data from the
ADC into the FIFO memory, which
then contains a digitized signal of one

TV line. The Philips 80C552 MCU
reads data from the FIFO and calcu-
lates the feedback control data for
camera positioning and zooming.
Systems like this are commonly used
in applications that need to track and
measure objects visually, such as nav-
igation and noncontact measurement.

Using the single-shot TV trigger mode
and Autostore function of our mixed
signal scope (MSO), we discovered a
25 ns edge instability or jitter on the
ADCLK signal. With the MSO, we
easily captured and stored a com-
plete 20 ms stream of one-half of the
TV picture at 50 MSa/s for further
processing and analysis (Figure 2).

Figure 3 shows the critical timing of
writing the data from ADC into the
memory; 5 ns was not enough time
for the memory to store the data.
This problem, which was impossible
to find with a conventional scope,
was obvious when we measured with
a hybrid scope/logic analyzer. Using
these results, we were able to repro-
gram the PLD to avoid the problem.

The ability to trigger the MSO with a
TV signal made it easier to debug the
MCU software routine. The combina-
tion of analog and digital acquisition
gave us a complete view of some
rather complex behavior in our
design.

Jan Fischer and Petr Kocourek are with Czech
Technical University and Petr Navratil is with
T&M Direct.

Mixed signal scope

TV in
ADC

PLL ADCLK WR

PLD

Data
Bus

HSYNC

FIFO
Philips
80C552
MCU

Sync
separator

Figure 1 Block diagram of the CCD camera controller showing analog and digital test connections.

Figure 2. The analog output of the CCD camera and the relevant
digital signals in the control system. The output of the ADC is on
lines 0-7, the ADCLK signal is on line 10, and the WR signal is
on line 11.

Figure 3. The display markers highlight the timing relationship
between ADCLK and WR.

13

Rock-solid waveforms at rock-bottom prices

Tackle your test and verification
tasks using the clean, stable
waveforms built into these
function/arbitrary waveform genera-
tors from Agilent — and when a
standard signal isn’t enough, create
your own custom arbitrary wave-
forms to simulate real-world signals.

Both the Agilent 33120A and the
33250A function/arbitrary waveform
generators offer a lot of capability
and performance for a very
affordable price. Standard outputs
include sine, square, ramp, noise,
sin(x)/x, dc volts and more. AM, FM
and FSK capabilities make it easy to
modulate waveforms with or without
a separate source.

With the 33250A, you can also
generate simple pulses up to 50 MHz.
And the color graphical display and
user-friendly front panel make com-
plicated tasks easy to accomplish.
For system applications, both GPIB
and RS-232 interfaces are standard,
and support full programmability
using SCPI commands. Choose the
performance that’s right for your
application

Agilent 33120A

•15 MHz sine and square wave
outputs

•Build arbitrary waveforms with 40
MSa/s speed and storage for four
16,000-point waveforms

•Only $1795

Agilent 33250A

•80 MHz sine and square wave
outputs

•Build arbitrary waveforms with 200
MSa/s speed and storage for four
64K-point waveforms

•50 MHz pulse waveforms with
variable rise/fall times

•Only $4,200

33120A 33250A
Waveforms
Standard Sine, square, ramp, triangle, noise, Sine, square, ramp, pulse, noise,

sin(x)/x, exponential rise and fall, sin(x)/x, exponential rise and fall,
cardiac, dc volts cardiac, dc volts

Arbitrary
Waveform length 8 to 16,000 points 1 to 64 K points
Nonvolatile memory 4 waveforms 4 waveforms

(each from 8 to 16,000 pts) (each from 1 to 64K pts)
Vertical resolution 12 bits 12 bits
Sample rate 40 MSa/s 200 MSa/s

Frequency characteristics
Sine/Square 1 µHz to 15 MHz 1 µHz to 80 MHz
Ramp/ Triangle 100 µHz to 100 kHz 1 µHz to 1 MHz
Pulse 500 µHz to 50 MHz
White noise 10 MHz bandwidth 50 MHz bandwidth
Resolution 10 µHz or 10 digits 1 µHz; except pulse, 5 digits
Accuracy 10 ppm in 90 days (18 °C to 28 °C) 0.3 ppm (18 °C to 28 °C)
THD (dc to 20 kHz) 0.04% <0.2% + 1 mVrms
Output characteristics
Amplitude

Into 50 Ω 50 mVp-p to 10 Vp-p 10 mVp-p to 10 Vp-p
Accuracy (at 1 kHz) ±1% of specified output ±1% of setting ±1 mVp-p

Flatness <100 kHz ±1% (0.1 dB) <10 MHz ±1% (0.1 dB)
(sine wave relative to 1 kHz, 100 kHz to 1 MHz ±1.5% (0.15 dB) 10 MHz to 50 MHz ±2% (0.2 dB)
Autorange,into 50 Ω) 1 MHz to 15 MHz 50 MHz to 80 MHz ±5% (0.4 dB)

Ampl >3Vrms ±2% (0.2 dB)
Ampl <3Vrms ±3.5% (0.3 dB)

Modulation
AM

Modulation Any internal waveform, including arb Any internal waveform, including arb
Frequency 10 mHz to 20 kHz 2 mHz to 20 kHz
Source Internal/external Internal/external
Depth 0% to 120% 0% to 120%

FSK
Internal rate 10 mHz to 50 kHz 2 mHz to 1 MHz
Frequency range 10 mHz to 15 MHz 1 µHz to 80 MHz

FM
Modulation Any internal waveform, including arb Any internal waveform, including arb
Frequency 10 mHz to 10 kHz 2 mHz to 20 kHz
Deviation 10 mHz to 15 MHz dc to 80 MHz
Source Internal only Internal/external

Sweep
Type Linear or logarithmic Linear or logarithmic
Start/Stop Frequency 10 mHz to 15 MHz 100 uHz to 80 MHz
Sweep Time 1 ms to 500 s 1 ms to 500 s
Trigger single, external, or internal Single, external, or internal
Marker Falling edge of sync (programmable)

Burst
Waveform frequency 5 MHz max. 1 µHz to 80 MHz
Count 1 to 50,000 or ∞ cycles 1 to 1,000,000 or ∞ cycles
Start/Stop phase –360.0° to +360.0° –360.0° to +360.0°
Internal period 10 mHz to 50 kHz 1 µs to 500 s
Gate source Internal/external External
Trigger source Single, external, or internal Single manual trigger, internal,

or external
Warranty 3 years 3 years
∞ = infinity symbol

MCU Debugging Tools

33120A 33250A

See an interactive product overview at
http://www.agilent.com/find/waveform

14

Easily see what’s happening in your mixed analog and digital designs

Agilent 54620 Series scopes are
optimize with just the capabilities
you need for verifying and debugging
designs that include embedded
8- or 16-bit microcontrollers:

• 2 MB MegaZoom deep memory on
each channel so you can capture
long, non-repeating signals,
maintain high sample rate and
quickly zoom in on areas of
interest;

• a revolutionary ultra-responsive,
high-definition display that’s a
clearer “window into your
world”— it lets you see more
signal detail than ever before;

• flexible triggering that lets you
easily isolate and analyze the
complex signals and fault
conditions com-mon in mixed
analog and digital designs.

Multiple configurations to meet
your needs
Mixed signal scopes: With 2 analog
channels and 16 digital channels,
these scopes combine the detailed
signal analysis of a scope with the
multi-channel timing measurements
of a logic analyzer, so you can simul-
taneously test and monitor the high-
speed digital control signals and the
slower analog signals in your design.

4-channel scope: If your designs
include heavy analog content, the
100- MHz 54624A will give you the
channel count and measurement
power you need to get your debug
and verification done with ease.

2-channel scopes: The 2-channel
scopes give you an affordable way
to see long time periods while main-
taining high sample rate so you can
see details in your designs.

See for yourself with a
free demo
Every scope user knows that the
real test is how well the instrument
performs in your environment, with
your design. Call Agilent
Technologies to arrange a free demo.

You can also check out the benefits
of MegaZoom at
www.agilent.com/find/MegaZoom.

Dependable, trouble free
connection to fine-pitch ICs

The Agilent Wedge probe tip adapter

solves the problem of connecting your

scope or logic analyzer to fine-pitch,

TQFP and PQFP surface-mount ICs. It

works by inserting compressible dual

conductors between adjacent IC legs.

The flexible conductors conform to

the size and shape of each leg to

ensure tight contact. It’s then a

simple matter to connect your scope

or logic analyzer to the Wedge.

The Wedge’s unique design delivers

secure, redundant contact on each

leg, with little chance of shorting to

adjacent legs. Plus, it’s mechanically

non-invasive, so it won’t damage

your device under test.

Agilent Wedges are available with

3-, 8- and 16-leg connections for 0.5

and 0.65 mm IC packages.

The Agilent Wedge provides dependable,
trouble-free connection to fine-pitch ICs.

Agilent 54620 Series scopes

54621A 54621D 54622A 54622D 54624A

Channels 2 2+16 logic 2 2+16 logic 4

Scope

Bandwidth 60 MHz 60 MHz 100 MHz 100 MHz 100 MHz

Sample rate 200 MSa/s

Memory depth 2 MB/ch

Logic

Max sample rate n/a 400 MSa/s n/a 400 MSa/s n/a

Max memory depth n/a 4 MB/ch n/a 4 MB/ch n/a

Display High definition with 32 levels gray scale; 1,000-point horizontal resolution

Display update rate Up to 25,000,000 vectors/sec per channel

Timebase (per division) 5 ns to 50 s

Triggering Edge, pulse width, pattern, I 2 C, TV, sequence, duration

Peak detect 5 ns

Measurements Peak, average, RMS, max, min, frequency, period, pulse width, rise/fall time, duty cycle

Waveform math Subtraction, multiplication, FFT, integration, differentiation

Storage Built-in 1.4 M floppy disk

Connectivity RS-232, parallel standard; optional GPIB; optional integrated printer

Built-in help In 9 languages

Warranty 3 years standard, optional increase to 5 years

Price $2,495 $3,995 $3,295 $4,995 $4,995

15

Affordable and user friendly logic analysis
MCU Debugging Tools

The Agilent LogicWave PC-based
logic analyzer will have you making
measurements in just minutes. With
its familiar Windows interface,
LogicWave is easy to set up and use,
yet it still offers the speed and
performance you need for serious
logic analysis.

LogicWave features 34 channels of
intuitive logic analysis (32 state
channels), 100 MHz state analysis,
and 250 MHz timing analysis, with
memory depths up to 128 K.
Reliability, signal fidelity and other
quality measures far exceed the
typical PC-based logic analyzer, too.

And LogicWave is priced low enough
that it’s the ideal personal analyzer
for design teams who currently share
a primary logic analyzer.

Experience this new level of
simplicity yourself by downloading
the free user interface software from
the LogicWave web site:

www.agilent.com/find/LogicWave or
call Agilent and ask for the the
software on CD-ROM.

Price: $3,200

Model Agilent Technologies LogicWave (E9340A)
State/timing channels 34

Maximum state clock 100 MHz

Maximum timing sample-rate 250 MHz

Memory depth 128K timing, 64K state

User interface Windows 95/98/NT, PC-hosted (runs as an application on

any Pentium or better, desktop or laptop)

“WYDIWYC”timing trigger “What you draw is what you capture” visual timing trigger

events

Printers Shared with the host PC — can print to any local or network

printer supported by the PC

Probing Agilent patented, 100 k•••, 1.5 pF

Dimensions 11.5” x 9” x 2.5” (29.1 x 22.8 x 6.3 cm)

Weight 4.5 pounds (2.1 kg)

I/O ports Enhanced Parallel connection to PC for fast deplay update

rates, trigger IN/OUT BNC

Agilent Technologies’ Test and Measurement
Support, Services, and Assistance

Agilent Technologies aims to maximize the value
you receive, while minimizing your risk and prob-
lems. We strive to ensure that you get the test
and measurement capabilities you paid for and
obtain the support you need. Our extensive sup-
port resources and services can help you choose
the right Agilent products for your applications
and apply them successfully. Every instrument
and system we sell has a global warranty.
Support is available for at least five years beyond
the production life of the product. Two concepts
underlie Agilent's overall support policy: "Our
Promise" and "Your Advantage."

Our Promise

Our Promise means your Agilent test and meas-
urement equipment will meet its advertised per-
formance and functionality. When you are choos-
ing new equipment, we will help you with prod-
uct information, including realistic performance
specifications and practical recommendations
from experienced test engineers. When you use
Agilent equipment, we can verify that it works
properly, help with product operation, and pro-
vide basic measurement assistance for the use of
specified capabilities, at no extra cost upon
request. Many self-help tools are available.

Your Advantage

Your Advantage means that Agilent offers a wide
range of additional expert test and measurement
services, which you can purchase according to
your unique technical and business needs. Solve
problems efficiently and gain a competitive edge
by contracting with us for calibration, extra-cost
upgrades, out-of-warranty repairs, and on-site
education and training, as well as design, system
integration, project management, and other pro-
fessional engineering services. Experienced
Agilent engineers and technicians worldwide can
help you maximize your productivity, optimize the
return on investment of your Agilent instruments
and systems, and obtain dependable measure-
ment accuracy for the life of those products.

For more assistance with your test &
measurement needs or to find your local
Agilent office go to

www.agilent.com/find/assist

Or contact the test and measurement experts at
Agilent Technologies

1 800 452 4844 (8am-8pm EST)
Product specifications and descriptions in this
document subject to change without notice.

Copyright© 2001 Agilent Technologies, Inc.
Printed in USA July 15, 2001

5980-0943EUS

	Introduction
	Hint 1, Tracking down elusive glitches
	Hint 2, Characterizing analog-to-digital converters using a PC-hosted logic analyzer
	Hint 3, Verifying PWM dead time in motor controllers
	Hint 4, Verifying I 2 C bus arbitration
	Hint 5, What-if testing for MCU debugging
	Hint 6, Resolving hardware/software integration problems
	Hint 7, Correlating software and analog outputs in a CAN controller
	Hint 8, Debugging an MCU-based CCD camera controller
	Rock-solid waveforms at rock-bottom prices
	Easily see what’s happening in your mixed analog and digital designs
	Affordable and user friendly logic analysis
	Agilent Technologies’ Test and Measurement Support, Services, and Assistance

